

## **Gulf Harmony HVLP**

# Premium quality high viscosity index hydraulic oil for extreme temperature ranges

#### **Product Description**

**Gulf Harmony HVLP** series are premium quality anti-wear hydraulic oils specially developed for applications subjected to wide range of temperature or where small viscosity change with fluctuating temperature is required. They are formulated with high quality paraffinic base oils, a highly shear stable polymer and an advanced additive system to meet the stringent requirements of modern hydraulic systems. These oils provide excellent protection against oxidation degradation, rust & corrosion and wear. They also possess superior foam control, water separation and rapid air release properties. These oils exceed the performance requirements of global industry standards viz. DIN 51524 Part 3 HVLP & ISO 11158 HV.

#### Features & Benefits

- Exceptional anti-wear property results in longer component life reducing costs
- Extremely high viscosity index assures equipment protection at cold start-up temperatures and at high operating temperatures
- Excellent shear stability minimises viscosity loss over time and exhibits "stay-in-grade" performance under high shear conditions
- Excellent thermo-oxidative stability controls the formation of sludge & varnish and improves oil life
- Superior demulsibility helps in faster separation of water from oil and resists formation of emulsions
- Special rust & corrosion inhibitors protect multi-metallurgy components even in presence of moisture
- Rapid air release property minimises chances of pump cavitation leading to trouble free operations
- Compatible with multi-metals & most sealing materials commonly used in hydraulic systems

### **Applications**

- Hydraulic and power transmission systems subjected to a wide range of ambient & operating temperatures
- Critical high accuracy industrial hydraulic systems
- Hydraulic systems of excavators, cranes and hydrostatic drives subjected to most severe outdoor operating conditions

#### **Specifications, Approvals & Typical Properties**

| ISO Viscosity grades                      |         |                   | 32    | 46          | 68    | 100   |  |
|-------------------------------------------|---------|-------------------|-------|-------------|-------|-------|--|
| Meet the following Specifications         |         |                   |       |             |       |       |  |
| DIN 51524 Part 3 HVLP, ISO 11158 HV       |         |                   | х     | Х           | Х     | Х     |  |
| Typical Properties                        |         |                   |       |             |       |       |  |
| Test Parameters                           |         | ASTM Method       |       | Test Values |       |       |  |
| Viscosity @ 40 °C, cSt                    |         | D 445             | 32.1  | 46.9        | 69.9  | 99.4  |  |
| Viscosity Index                           |         | D 2270            | 151   | 152         | 152   | 152   |  |
| Flash Point, °C                           |         | D 92              | 218   | 218         | 226   | 238   |  |
| Pour Point, °C                            |         | D 97              | -39   | -36         | -36   | -27   |  |
| Density @ 15°C, Kg/l                      |         | D 1298            | 0.868 | 0.874       | 0.881 | 0.886 |  |
| Rust Test                                 |         | D 665A/B          | Pass  | Pass        | Pass  | Pass  |  |
| Emulsion Test                             | @ 54 °C | D 1401            | Pass  | Pass        | Pass  | -     |  |
| 30 minutes max                            | @ 82 °C |                   |       | -           | -     | Pass  |  |
| Foam Stability in all three sequences, ml |         | D 892             | Nil   | Nil         | Nil   | Nil   |  |
| Turbine Oil Stability Test, hrs           |         | D 943             |       | 2500+       |       |       |  |
| FZG, fail load stage, minimum             |         | DIN 51354 Part II | 11    | 11          | 11    | 11    |  |

January 2011